Numerical investigation of the parabolic mixed derivative diffusion equation via Alternating Direction Implicit methods
نویسندگان
چکیده
In this dissertation, we investigate the parabolic mixed derivative diffusion equation modeling the viscous and viscoelastic effects in a non-Newtonian viscoelastic fluid. The model is analytically considered using Fourier and Laplace transformations. The main focus of the dissertation, however, is the implementation of the Peaceman-Rachford Alternating Direction Implicit method. The one-dimensional parabolic mixed derivative diffusion equation is extended to a two-dimensional analog. In order to do this, the two-dimensional analog is solved using a Crank-Nicholson method and implemented according to the PeacemanRachford ADI method. The behaviour of the solution of the viscoelastic fluid model is analysed by investigating the effects of inertia and diffusion as well as the viscous behaviour, subject to the viscosity and viscoelasticity parameters. The two-dimensional parabolic diffusion equation is then implemented with a high-order method to unveil more accurate solutions. An error analysis is executed to show the accuracy differences between the numerical solutions of the general ADI and high-order compact methods. Each of the methods implemented in this dissertation are investigated via the von-Neumann stability analysis to prove stability under certain conditions.
منابع مشابه
Domain Decomposition Operator Splittings for the Solution of Parabolic Equations
We study domain decomposition counterparts of the classical alternating direction implicit (ADI) and fractional step (FS) methods for solving the large linear systems arising from the implicit time stepping of parabolic equations. In the classical ADI and FS methods for parabolic equations, the elliptic operator is split along coordinate axes; they yield tridiagonal linear systems whenever a un...
متن کاملAn Alternating Direction Implicit Method for Modeling of Fluid Flow
This research includes of the numerical modeling of fluids in two-dimensional cavity. The cavity flow is an important theoretical problem. In this research, modeling was carried out based on an alternating direction implicit via Vorticity-Stream function formulation. It evaluates different Reynolds numbers and grid sizes. Therefore, for the flow field analysis and prove of the ability of the sc...
متن کاملA high-contrast fourth-order PDE from imaging: numerical solution by ADI splitting
We consider a nonlinear fourth-order diffusion equation that arises in denoising of image densities. We propose an alternative direction implicit (ADI) splitting method for its numerical solution. To treat the high-order and mixed derivative terms in the equation we adopt an ADI method by Hundsdorfer and Verwer to the present setting. The paper is furnished with numerical results for the evolut...
متن کاملAdi Finite Difference Schemes for Option Pricing in the Heston Model with Correlation
This paper deals with the numerical solution of the Heston partial differential equation (PDE) that plays an important role in financial option pricing theory, Heston (1993). A feature of this time-dependent, twodimensional convection-diffusion-reaction equation is the presence of a mixed spatial-derivative term, which stems from the correlation between the two underlying stochastic processes f...
متن کاملAn alternating direction implicit method for a second-order hyperbolic diffusion equation with convection
A numerical method is presented to solve a two-dimensional hyperbolic diffusion problem where is assumed that both convection and diffusion are responsible for flow motion. Since direct solutions based on implicit schemes for multidimensional problems are computa-tionally inefficient, we apply an alternating direction method which is second order accurate in time and space. The stability of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Mathematics with Applications
دوره 66 شماره
صفحات -
تاریخ انتشار 2013